Fixed-Point Migration

Introduction

One of the major stages of this project was the migration of the LAME MP3 codec from floating point arithmetic to fixed-point arithmetic. This stage was seen as major because of the high-risk level involved. The changes to the code would probably cause a change in the quality of the audio produced. For this reason it would not be easy to verify that the changes had not altered the algorithm and that the errors introduced were because of the limited range/ precision of the fixed-point type. 

Fixed point migration was needed because research suggested that floating point values not only required more processing than integral values, they also required more gate area on the reconfigurable device [
]. In order to maximise the number of functions on the FPGA gate area had to be conserved. This would allow a greater level of parallelism in the application, especially between the host CPU and the FPGA, which should improve performance. As integral operations execute in less time than floating point operations, further performance gains are expected from migration to fixed-point arithmetic. Also, “all Handel-C conversions start by converting floating-points to integers [fixed-point]” [
].

The Acceptance criteria for the Migration plan

Most of the other major milestones in the development process can be tested by co-simulation of previous prototypes and the version under consideration and comparing the output. The fixed-point version can only be verified against the floating-point version by measuring the percentage error in the expected and actual results as well as by listening tests. It would also be difficult to trace errors introduced by changes to the original application due to the volume of functions in LAME and the complexity of the codec algorithms. A plan needed to be derived that reduced the number of changes to the application until the range and precision for an output that varied from the floating point by a slim margin had been derived. This was particularly important because of the number of hard coded lookup tables containing floating-point values in the codec.

The experience of removing the system and I/O calls in the original source and redirecting these requests to a system and I/O module made the development team impose a further constraint on the fixed-point migration that it should require less effort than redirecting the system and I/O services. This requirement had to be met despite the fact that some design space exploration would be needed before the range and precision of the fixed-point type was finally fixed. The final requirement was that it should be possible to verify that the code no longer contained floating-point values or floating-point type operations upon completion of the migration process.

Analysis and Alternatives

Range and Precision

The usual method for porting an application from floating point to fixed-point data types involves mathematical analysis of the algorithms involved to determine the dynamic range of all values [
]. If the analysis shows that the range and precision needed is too great for the memory requirements of the application, say 40 bits are needed but only 32 bit data types are supported on the target architecture, alterations are made to the algorithm to scale the values at various stages of the algorithm so they fit into the memory available. For example, if it was found that the values were always a multiple of ten, all values would be pre-divided by the highest common factor before calculation, and then the final result would be multiplied by the highest common factor. As the project does not have a mathematician at its disposal, and this method could prove timely, this route was not taken. 

The developers of the MPEG Audio Layer 3 standard, the Fraunhofer Institute, suggest that an ISO compliant MP3 system is possible with fixed-point number with a 20-bit arithmetic word length [
]. This was the first clue to a possible implementation. Analysis of the hard-coded floating-point values in LAME suggested that the fixed-point type should be signed. Both IEEE single and double precision values are present in the source with the precision of these values being up to 10 and 20 decimal places respectively (34 to 67 bits of precision respectively). This meant that a precision was needed that supported values to between 10 and 20 decimal places. It is not a major aim of this project to produce a high audio quality implementation of MP3 so a compromise on the precision or the range was possible if and only if the sound was suitable for demonstration purposes.

Fixed-Point Library

Once word lengths are provisionally set, a fixed-point library is utilised for the computation if the architecture does not already support fixed-point numbers. The 80x86 architecture does not directly support fixed-point operations, so a library had to be acquired or built. As part of the project’s rapid application development policy and the time constraint imposed on this phase, it was decided that an existing fixed-point library should be utilised rather than developing one specific to the application. A library was chosen which was specifically designed for use in C code and code written in Handel-C. 

The Mariachi fixed point library [
] supports conversion of float and integral values to a user defined fixed point type, as well as conversion of the fixed point value to either an integer or floating point value. Trigonometric transformations are supported via a fast lookup table. Multiplication and division are the only arithmetic operations supported directly from the library. 

Embedded processors that use fixed-point arithmetic usually saturate the result of the calculation on overflow [
]. When the result of an operation is greater than the greatest positive number that can be represented, the result is set to the maximum number that can be represented. When the result is less than the largest negative number that can be represented, the result is given as the largest negative number that can be represented. In the best case, overflow causes the signal to be distorted. A MP3 song may sound off-key because of overflow [6]. By default Mariachi does not support signed numbers. Functionality was added to support signed numbers, as well as negative overflow. Addition and subtraction were added for completeness sake and to support saturation of addition and subtraction.

The acquired library was then tested for correctness and also to ensure that the programmers understood how to use the basic functions of Mariachi. During testing it was found that fixed-point division was not as accurate as needed for the application under development. Minor alterations were therefore made to Mariachi for greater precision in division. When the result of an operation requires more precision bits than are provided in the fixed-point specification, quantisation errors occur. Quantisation errors cause noise. A MP3 song will sound scratchy because of quantisation errors [6].

Combining LAME with Mariachi 

The next step in migration was deciding how to combine LAME with the fixed-point library. The team decided that an intermediate step was needed where the hard coded floating point values were allowed to coexist with the fixed point data type until the format of the fixed point number was formalised. This would reduce the number of changes needed when the range and/or precision of the fixed type would be altered for greater sound quality. 

It was also decided that it would be too time consuming to convert each floating point type operation in the application to a function call to the Mariachi library, either manually or by using automatic means. As LAME is written in C, it could be potential easier to port the code to C++ and introduce a class which performed the fixed point calculation be operator overloading and then calling the appropriate function in Mariachi. From this base type two classes could be derived, one that would replace single precision operations in the original code, and the other that would replace double precision operations. This has the benefit of reducing the amount of memory needed by the application. If all the floating point values were replaced by a single fixed point type that was nearly as precise as a double, it would require more memory than if there are two different fixed types. Another factor in the reasoning was that having all the values fixed to similar precision to a single precision float would probably result in underflow (quantisation error) and significant lost of sound quality. 

It was also decided that an intermediate fixed type that was somewhere between the precision of a single and a double would be developed. If this type proved to be adequate both in terms of memory requirements as sound quality, this would be the preferred option for full implementation of fixed types in the entire source.

It is imagined that there will be fewer functions from LAME in Handel-C than executing on the host in the partitioning route. These “hardware” functions cannot utilise the C++ class so at some later date the operator overloaded operations in the “hardware” candidates must be replaced with direct function calls to Mariachi.

Porting LAME from C to C++

As the ASIP route relies heavily on the fact that the application compiles using GCC, it was essential that when LAME was ported to C++, the changes that were made were for the most part ANSI C++ compliant. To ensure compliance Microsoft Extensions to C++ were disabled in Microsoft Visual C++ by checking the disable language extensions check box in the customise category of the C/C++ tab in the project settings dialog box.

The next step was to assess the effort required in porting the C to C++. First the project was recompiled with the /TP option which tells the Visual C++ compiler to compile all source files as C++ even if their extension is *.c.  This action caused the compiler to flag over 350 errors. Further investigation indicated that the majority of these errors were due to values not being cast to the appropriate type. By far the most frequently occurring error was due to variables not being cast to a “lame_internal_flags” pointer. Once all errors resulting from values not being type cast to the appropriate type had been fixed, the remaining errors were linker errors. These turned out to be from pre-processor directives to define certain functions and variables as externally C declared. Commenting out these directives resolved most of these errors. 

The Fixed Point Class

The class was implemented following the general rules for operator overloading [
]. The main rule of interest to the development team was that overloaded operators obey their typical use with built-in types. This meant that the class’ operators would obey the rules of precedence, grouping, and number of operands when combined with floats, integers, and all standard C types.

There are two methods of implementing the operator functionality. These are class member functions and global functions with friend access. Global functions are very useful for combining the class with basic types as the order of the operation can be specified. For binary operators this means that two implementations of the operator must exist. For example, the addition operator for integers with the class had to be specified for the integer first and the class second as well as for the class first and the integer second. To ensure that either implementation executed in the same time, each method was specified as direct calls to Mariachi rather than implementing one version of the method and reusing this functionality in the other. Comparison, arithmetic and type cast operators were specified and tested for the fixed-type class.

Once the class had been adequately tested, it was integrated with LAME by searching and replacing floating-point type declarations with the fixed-point class. At the time of writing, all single precision floats in the encoding process have been replaced. The team is in the process of replacing double precision floats with an appropriate fixed-point type and removing floating-point types from the decoding algorithm. Some work also needs to be done to make fixed-point versions of all the floating point libraries used in LAME such as exponential and trigonometric operations.

Verifying Removal of All Floating point values

This task will be done in two different ways. First the files will be searched for any variables still declared as single or double precision floats. Next a regular expression search will ensue to find any hard-coded floating-point values. Finally, an assembly listing of the project will be parsed for any lines containing an 80 x 86 floating-point instructions. Where floats are found they will be replaced with the fixed-point type. 

Conclusion

In this section an overview of the method used to port LAME from floating-point arithmetic to fixed-point arithmetic was described. The method uses a fixed-point library and an object with arithmetic, comparison and type cast operators overloaded. Migration to fixed-point required the source to be ported from C to C++. Some work still remains before the code is fully migrated to fixed-point arithmetic.

Static Analysis of MP3 algorithms

In this section, we briefly described the transformations occurring in MP3 and why they are used. This includes the formula of the relevant transform and analysis of the algorithm to determine possible functional units to be added to the ASIP. Transformations that could be run in parallel on partitioning route are also considered. There is also a brief mention of some optimisations in the LAME source such as unrolling MDCT.

Encoding

Figure 1 below shows the typical MP3 encoding process. The model indicates that it is possible to have Filter Bank and MDCT in parallel with FFT and psycho-acoustic model. It is also possible to execute the coding of the side-information concurrently Huffman encoding. The remaining processes can be pipelined between and after each of the paralleled processes. 
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Perceptual measurement techniques
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perceptual measurement techniques have progressed to the point where they are a very
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Figure 1: Detailed view of MP3 Encoding (After [4])

Poly-phase Filter Bank

This stage is the key component common to all layers of MPEG Audio compression. The poly-phase filter divides the audio signal (512 PCM samples) into 32 equal-width frequency sub-bands [
]. The filter only provides reasonable frequency resolution but has very good time resolution and needs very little computation compared with a direct implementation of a convolution filter [8]. The filter and its inverse are both lossy transformations. Part of the original audio signal is loss and can never be recovered. The error introduced by the filter’s lossy compression is designed to be minimal and inaudible.

The equal width sub-bands do not correspond to the critical frequency bands of the human auditory system. Some critical bands have a greater width than the equal-width bands. Others have a smaller width than the equal-width sub-bands and so it is possible for the equal-width bands to span several critical bands.

The filter outputs overlap in the frequency domain. A signal at a single frequency can be covered by two adjacent filter outputs. This would normally produce a considerable amount of aliasing. The decoder’s synthesis filter bank cancels these affects. 

The operation of the filter is governed by the equation below.
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Where:

i is the sub-band index and ranges from 0 to 31,

st[i] is the filter output sample for i-th sub-band at time t, where t is an integer multiple of 32 audio sample intervals,

C [n] is one of the 512 coefficients of the analysis window defined in the standard,

x [n] is an audio input sample read from a 512 sample buffer, and
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 are the analysis matrix coefficients

The ASIP may have a fast multiply and accumulate (MAC) unit and cosine function in order to implement a high performance version of the poly-phase filter. The partitioning route might decide to compute all or some of the 32 filter-bank outputs in parallel as one filter-bank’s output is not dependent on any of the others.

Modified Discrete Cosine Transform (MDCT)

Layers I and II of the MPEG audio standard do not use an MDCT. Layer III introduces this transform to compensate for some of the deficiencies of the filter-bank. The MDCT transforms the samples into frequency components on which the bit allocation (Huffman coding) is performed after quantisation. The MDCT provides better spectral resolution than the filter-bank. The equal-width sub-band outputs of the poly-phase filter-bank are further divided. These shorter-width frequency bands can be more easily grouped into the critical sub-bands of human hearing. Higher-quality audio and greater compression can be produced by taking into consideration the psycho-acoustic effects within these critical sub-bands in the quantisation stage than is possible using the filter-bank outputs directly [4]. The MDCT removes artefacts introduced by overlapping output bands of the poly-phase filter bank [8]. The MDCT process is loss-less unlike the poly-phase filter and so does not introduce errors into the data. Although the MDCT has superior properties to the poly-phase filter-bank, the filter-bank is included to make MP3’s output similar to Layer I and Layer II. 
In MPEG audio layer III encoding, the MDCT used is of window size N=36. Each element in the window produces 18 output coefficients. Thus when each of the 32 sub-bands from the analysis filter-bank is windowed, 576 (32 sub-bands * 18 MDCT coefficients/sub-band) MDCT coefficients are produced. 

The MDCT equations [
] are shown below. If the input samples are in array xi then the samples are first windowed by a function dependent on the block type involved and the results placed in zi.

For block type = 0 (normal block)
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For block type = 3 (stop block) 
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For block type = 2 (short block), the 36 samples are first sectioned into 3 overlapping blocks.
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Once the input samples are windowed, the MDCT is performed according to the following equation:
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These equations once again show that the ASIP may need to have a fast multiply and accumulate (MAC) unit, and cosine functional unit if there is to be any performance gain. A sine function might also be implemented re-using the cosine function, as their functions are essentially the same except for a 90-degree phase shift. Alternatively, a unit that does the complete modified discrete cosine transform might be implemented.

The MDCT in LAME was hand unrolled to exploit the symmetry of the trigonometric factors such that successive multiplications were replaced with additions. This reduced the computational load from 1300 additions and 650 multiplications in the ISO example encoder to 244 multiplies and 324 additions. According to Cheng this resulted in a 70% reduction in the time to compute the MDCT [9]. This suggests that implementing the function as is in hardware, then paralleling the computations that do not rely on symmetry, may significantly improve performance.

Quantiser and Huffman Coding

In the quantisation stage each critical band is allocated a scale factor. The quantisaion is non-uniform as each MDCT coefficient may have a different scale factor. Uniform quantisation would scale all values by the same amount. The larger this scale factor, the greater the number of bits allocated to this critical band. Thus by varying the scale factor one can control the degree to which the audio is compressed in favour of sound quality or bit-rate. 
The Layer III quantiser raises its input (the MDCT coefficients) to the power 3/4 before quantisation to provide a more consistent signal-to-noise ratio over the quantiser output values. The ASIP may therefore implement a power function. The quantisation results from the truncation of the product of MDCT coefficients and the scale-factor for a critical band to an integer value [
] and is therefore a form of lossy compression. The dynamic range of the quantised values is [-1, 1]. 

The common method for implementing the quantiser and Huffman encoder in a Layer III encoder is with two nested iteration loops [4]. The outer loop (noise control loop) first makes an estimate about the scale-factors for each critical band and calculates the noise (audibility of the error) introduced by quantisation. If the noise introduced is greater than the masking threshold determined by the psycho-acoustic model, the encoder increases the scale-factor of that band so that more bits are allocated after quantisation, effectively decreasing the audibility of the error introduced by quantisation. The audible noise (masking to noise ratio (MNR)) for each sub-band is computed by the following equations:
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where SNR is the signal to noise ratio and SMR is the signal-to-mask-ratio from the psycho-acoustic model.
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where 
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is the original signal and 
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 is the value of 
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 after quantisation.

The SNR equation indicates that the ASIP might have a logarithmic function. Once again a MAC might be used as summation of values squared could be interpreted as a multiply and add. The partitioning route might want to compute the MNR for each critical sub-band in parallel.

If the MNR value is greater than zero, the quantisation noise in that sub-band will be completely imperceptible to humans. If the sub-band with the most negative MNR has the most audible noises, and so must be allocated the most bits.

The inner loop (rate control loop) determines the number of bits required to Huffman code the quantised values. The more frequent, smaller quantised values are assigned shorter code words by the Huffman code tables. Huffman coding is a lossless form of compression. If the number of bits required is too great for the specified bit-rate, a new scale factor is determined by decreasing the last scale factor by some step size for each offending critical band. The inner-loop is repeated until the Huffman-coded data satisfies the bit-rate. If the inner-loop has made changes to the scale-factors, the outer-loop must re-calculate the noise and verify that it still is below the masking threshold.

The process of determining the scale-factors is called analysis-by-synthesis in literature [4] because of its determination of a result based on trial and error. The resulting scale-factors are transmitted as part of the side-information field of the MP3 frame.

Fast Fourier Transform (FFT)

The FFT is used to give the psycho-acoustic model a better time to frequency mapping than provided by the poly-phase filter-bank. Very fine frequency resolution is needed for an accurate calculation of the masking thresholds in the psycho-acoustic model and FFT provides this. 
A standard Hann weighting is applied to the audio data before the Fourier transformation to reduce the edge effects of the transform window.1024 audio samples are considered in the FFT analysis window. This does not completely cover the 1152 samples (2 * 576 quantised MDCT coefficients) that may be in an MP3 frame. 
The equation below shows the standard FFT equation where yt is an audio sample and n is the number of samples in the analysis window.
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Once again analysis indicates the ASIP might include a MAC unit. It may also have exponentiation function.

Psycho-acoustic Model

The psycho-acoustic model uses the frequencies produced by the FFT to determine the signal to mask ratio. In perceptual coding schemes, frequencies are often organised in critical band quanta in order to simplify psychoacoustic calculations. The corresponding unit is called Bark. Two adjacent critical bands have a bark difference of 1. 
At each frequency, there is a minimum intensity, below which sound is inaudible. No information about these inaudible frequencies. This minimum intensity is called the absolute masking threshold. There are two competing models used in the psycho-analysis. “Psycho-acoustic model 1 is less complex the psycho-acoustic model 2 and has more compromises to simplify the calculations” [8]. Model 2 includes specific modifications to accommodate the use of the MDCT in Layer III.
Model 1 determines the mask empirically using the following equation:
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There is great room for parallelism in this equation. The ASIP designers might include a power functional unit and an exponential unit to improve performance of this calculation.
Model 2 uses a spreading function is used to model intra- and inter-band masking across critical frequency bands determined by the equation:
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where z = zi – zj is the frequency difference in bark.. zi is the central bark of a band spread into, zj is the bark value of the spreading signal.

The spreading function equation indicates that a MAC might be used in the ASIP. This unit could calculate the value to be square rooted. A square root unit might also be added to the ASIP’s architecture. The equation does not allow much parallelism in the partitioned system. 

As the MP3 standard gives developers the freedom to implement a psycho-acoustic model besides the two example models provided with the standard, the remaining stages of the psycho-acoustic model are not described in detail here. The methods generally calculate the average signal energy in each critical sub-band from grouped FFT results. The signal to mask ratio (SMR) is then computed by dividing the audibility threshold.
Decoding
The decoding process used in MP3 is shown in Figure 2. Information in the frame’s header is used to unpack each encoded frame into its constituent parts. The audio data is then sent to the Huffman decoder for decompression by look-up tables. The scale-factors in the frame’s side information field are used to decompress the Huffman decoded data in the inverse quantisation stage. The decompressed data is then mapped back to the time domain and outputted.
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Figure 2: Detailed view of MP3 decoder
There is no inter-process concurrency in the decoding process. The stages might be implemented using a pipeline. MP3 is an asymmetric algorithm. The decoding is faster than the encoding.
Inverse Quantisation
The inverse quantiser in the MPEG Audio decoder is the inverse process of the encoding quantiser.  The output values of the inverse quantiser are raised to the power of 4/3 to reverse the processes that occurred in the encoder quantiser. The audio data is downscaled by the scale-factors derived from the side-information section of the MP3 frame. This further decompresses the audio data.
Inverse MDCT 

This stage removes the alias cancellation of the MDCT so that the synthesis filter-bank can re-construct the sub-band samples from their original alias form. It is the reverse of the MDCT process used in the encoder. It maps the decompressed data from 576 frequency lines to 32 frequency lines.
The equation for the inverse MDCT [
] is shown below:
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 for i = 0 … N-1 and N=12 or 36

Once again we see that the ASIP may need to implement a fast cosine function and a MAC unit. The independence of each de-quantised line’s result from its neighbours makes this process a candidate for parallelising in the partitioning route.  
Synthesis Filter-bank

The synthesis filter-bank converts from the frequency domain to the time domain. The data from the IMDCT transform in each sub-band are converted to PCM samples. It is the reverse process of the encoder’s poly-phase filter-bank. The conversion involves the following steps:
1. The 32 sub-band samples are matrixed to produce a 64 value vector
2. The vector is then windowed with a constant window function

3. Finally the windowed results are summed to produce the output PCM samples.

The following equation is used for step 1:
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 is the sub-band samples
Once again we see that the ASIP needs a MAC unit and a cosine function.

Conclusion

In this section we considered the compression and decompression processes in MPEG audio layer 3. In particular, possible functional units to be added to the ASIP and configurations of the partitioned system were derived from the equations used in the data transformations.
A MAC unit, trigonometric unit, power unit, exponential unit, logarithmic unit and a square root unit may be implemented in the ASIP. It is possible to have inter- and intra-process concurrency in the partitioned system. For example the poly-phase filter-bank and the FFT may be executed in parallel. Within each of these processes it is possible to compute the transform in parallel.  
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